Genome-Wide Signatures of ‘Rearrangement Hotspots’ within Segmental Duplications in Humans
نویسندگان
چکیده
The primary objective of this study was to create a genome-wide high resolution map (i.e., >100 bp) of 'rearrangement hotspots' which can facilitate the identification of regions capable of mediating de novo deletions or duplications in humans. A hierarchical method was employed to fragment segmental duplications (SDs) into multiple smaller SD units. Combining an end space free pairwise alignment algorithm with a 'seed and extend' approach, we have exhaustively searched 409 million alignments to detect complex structural rearrangements within the reference-guided assembly of the NA18507 human genome (18× coverage), including the previously identified novel 4.8 Mb sequence from de novo assembly within this genome. We have identified 1,963 rearrangement hotspots within SDs which encompass 166 genes and display an enrichment of duplicated gene nucleotide variants (DNVs). These regions are correlated with increased non-allelic homologous recombination (NAHR) event frequency which presumably represents the origin of copy number variations (CNVs) and pathogenic duplications/deletions. Analysis revealed that 20% of the detected hotspots are clustered within the proximal and distal SD breakpoints flanked by the pathogenic deletions/duplications that have been mapped for 24 NAHR-mediated genomic disorders. FISH Validation of selected complex regions revealed 94% concordance with in silico localization of the highly homologous derivatives. Other results from this study indicate that intra-chromosomal recombination is enhanced in genic compared with agenic duplicated regions, and that gene desert regions comprising SDs may represent reservoirs for creation of novel genes. The generation of genome-wide signatures of 'rearrangement hotspots', which likely serve as templates for NAHR, may provide a powerful approach towards understanding the underlying mutational mechanism(s) for development of constitutional and acquired diseases.
منابع مشابه
Duplication hotspots, rare genomic disorders, and common disease.
The human genome is enriched in interspersed segmental duplications that sensitize approximately 10% of our genome to recurrent microdeletions and microduplications as a result of unequal crossing over. We review the recent discovery of recurrent rearrangements within these genomic hotspots and their association with both syndromic and nonsyndromic diseases. Studies of common complex genetic di...
متن کاملHotspots for copy number variation in chimpanzees and humans.
Copy number variation is surprisingly common among humans and can be involved in phenotypic diversity and variable susceptibility to complex diseases, but little is known of the extent of copy number variation in nonhuman primates. We have used two array-based comparative genomic hybridization platforms to identify a total of 355 copy number variants (CNVs) in the genomes of 20 wild-born chimpa...
متن کاملWhat drives recombination hotspots to repeat DNA in humans?
Recombination between homologous, but non-allelic, stretches of DNA such as gene families, segmental duplications and repeat elements is an important source of mutation. In humans, recent studies have identified short DNA motifs that both determine the location of 40 per cent of meiotic cross-over hotspots and are significantly enriched at the breakpoints of recurrent non-allelic homologous rec...
متن کاملRecovering genome rearrangements in the mammalian phylogeny.
The analysis of genome rearrangements provides a global view on the evolution of a set of related species. We present a new algorithm called EMRAE (efficient method to recover ancestral events) to reliably predict a wide-range of rearrangement events in the ancestry of a group of species. Using simulated data sets, we show that EMRAE achieves comparable sensitivity but significantly higher spec...
متن کاملHominoid fission of chromosome 14/15 and the role of segmental duplications.
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between mac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011